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Abstract

The purpose of this report is to give a thorough assessment of the Elastic Net (EN) method. We start

by describing some of its properties in detail. Next, we evaluate two R implementations of the EN in

for a problem whose analytical solution is known. Then, we show how it performs against alternative

approaches using both simulated and real datasets, which will help demonstrate the advantages as

well as the pitfalls of the algorithm. Finally, we offer a critical review of the paper based on our

findings.

1 Description of the method

Consider the standard linear regression setting:

y = Xβ + ε (1)

such that y ∈ Rn is the response vector, X ∈ Rn×p is matrix of covariates, β ∈ Rp is an unknown

parameter, and ε has n i id components such that E[εi ] = 0. In the case when n > p and rank(X ) = p,

there exists a unique ordinary least squares (OLS) solution to Equation 1:

β̂OLS = arg min
β
‖y − Xβ‖22 = (XTX )−1XT y (2)

where ‖·‖2 is the L2 norm. On the other hand, the OLS is not unique when n < p or when rank(X ) < p

(and thus it can’t be obtained by 2). But even in the case where it is unique, it might not be a satisfactory

solution. There are two main reasons [1]:

• Prediction accuracy: the OLS solution is known to have low bias but large variance. Recall

the decomposition of the mean squared error (MSE) as the sum of the variance of an estimator

and its bias squared. By changing the estimator in a way that the increase in squared bias were

compensated by a larger decrease in variance, we would obtain lower prediction MSE.
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• Interpretation: β̂OLS can have an arbitrary number of non-zero components. When p is large,

it becomes difficult to extract meaningful information or patterns from this estimator.

Variable subset selection tackles the above problem by iteratively obtaining a collection of OLS estimates

by selectively eliminating some of the columns of X , and then choosing a particular estimate based on a

given criteria or stopping rule. One classical method of this kind is the best-subset selection procedure.

In its most naive form, we calculate all the 2p OLS estimators associated with each possible configuration

for the p predictors; i.e, either in or out of the model (the case where all variables are out of the model

is simply β̂OLS = 0). The best of such models is then selected using a model selection criterion, like

the Akaike Information Criterion (AIC).

Although there are slightly more efficient ways of carrying out best subset selection than computing all

possible models, it still becomes unfeasible for even modest p. A classical alternative to best subset

selection is called forward stepwise selection. It starts with the model containing only the intercept,

and then at each stage it decides which variable to add to the model by evaluating all these augmented

models and selecting one using again a criterion like the AIC. This procedure can accommodate high-

dimensional settings, but because of its greedy nature, it tends to select sub-optimal models.

The variable selection problem has also been described in the Bayesian literature, with the most notable

example being the ”spike-and-slab” model for sparseness, first introduced in [2], later improved by [3]

and [4]. Basically, in the spike-and-slab framework the prior distribution of every βk has a point mass

at 0 (the spike), and is very flat elsewhere (the slab). This approach leads to posterior distributions

that put high probability on sparse solutions, and by their Bayesian nature, offer a direct way of doing

inference on the model parameters (e.g., obtaining standard errors) accounting by the implied search

process. Alas, its high computational cost means that it does not scale well to large datasets.

More recently, a broader class of procedures have been proposed by generalizing and extending the least

squares criterion [5]:

β̂θ = arg min
β
‖y − Xβ‖22 + Pθ(β) (3)

where θ is a parameter vector that requires tuning, and Pθ(β), known as the penalization, is increasing

in the absolute value of every component of β. Because of this property, if the least squares term of

3 was deleted, then the solution to the problem would just become β = 0. Therefore, the intuition

behind 3 is that we look for β that achieves a trade-off between agreeing with the data, while at the

same time having only a few non-zero components. Because we want Pθ(·) to apply the same way to

any component of β, regardless of the different magnitudes of the predictors, we generally assume that

X is standardized:

∀i ∈ {1...p} : 1Tn xi = 0, xT
i xi = 1

where 1n ∈ Rn is a vector of ones. We will further assume the response is centered (1Tn y = 0) in order

to avoid having an intercept term (which shouldn’t be penalized).
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One of the most successful examples of an estimator of this form is the Lasso [6]:

β̂(λ) = arg min
β

L(λ,β) = arg min
β
‖y − Xβ‖22 + λ‖β‖1 (4)

where ‖z‖1 =
∑p

i=1 |zi | is the L1 norm, and λ ≥ 0. Clearly, when λ = 0, we recover the OLS

estimator. However, for λ > 0 the Lasso yields interesting properties. Indeed, in this case, the Lasso has

a parsimony property, such that the solution to 4 only has a handful of non-zero coefficients [7]. The

number of such components decreases as λ increases, eventually setting β = 0. This shrinking of the

coefficients towards 0, besides helping with model interpretability, often improves prediction accuracy,

by achieving a positive trade-off between bias and variance.

In spite of the above, the Lasso has some undesirable properties. First, when n < p, the Lasso can

deliver at most n non-zero coefficients [8]. This does not occur with other penalized estimators, like

Ridge regression. We will investigate this behavior further in Section 3. Second, the Lasso estimator

is not guaranteed to be unique in all situations [8]. Third, the Lasso tends to introduce too much

bias (towards 0) in coefficients where the true parameter is large [5]. Fourth, the tuning process of

the λ parameter (usually cross-validation) tends to deliver unstable solutions [9]. Finally, it has been

empirically shown that the Lasso underperforms in setups where the true parameter has many small but

non-zero components [10]. In order to address some of these situations, [11] proposed the Elastic Net

(EN) estimator1:

β̂(λ1,λ2) = arg min
β

L(λ1,λ2,β) = arg min
β
‖y − Xβ‖22 + λ2‖β‖22 + λ1‖β‖1 (5)

with λ1,λ2 ≥ 0. It is clear that when λ2 = 0 we recover the Lasso, and that when λ1 = 0 we obtain the

Ridge estimator. In fact, viewed in terms of Equation 3, the EN penalty Pλ1,λ2(β) can be understood

as a scaled weighted average of the L2 and L1 norms:

Pλ1,λ2(β) = (λ1 + λ2)

(
λ2

λ1 + λ2
‖β‖22 +

λ1
λ1 + λ2

‖β‖1
)

(6)

Therefore, one could theorize that, with appropriate choices of (λ1,λ2), the EN can achieve a balance

between the good properties of the Lasso and the Ridge estimator, while ameliorating their inconve-

niences. Indeed, the authors argue that the EN does not have the limit of n non-zero coefficients when

n < p (we will offer a proof of this in Section 3). Additionally, the authors state that the EN improves

over the Lasso in another way in the situation n < p. Indeed, in presence of highly correlated predictors,

the Lasso will usually choose one of them and drop the other, which translates into unstable solutions.

In contrast, the authors show that the EN will select both, assigning to them similar coefficients.

1The authors actually call this the naive elastic net. We will drop this distinction as it has been deprecated in the
literature.
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The rest of the report is structured in such a way that we first go over the theoretical details of the EN,

discussing their relevance, and then move on to test this procedure both in simulated and real datasets,

against alternatives approaches.

2 On Lemma 1 and its relevance

2.1 Proof of Lemma 1

Lemma (Lemma 1 in [11]). Given data set (y , X ), and (λ1,λ2), define an artificial data set (y∗, X ∗)

by:

X ∗ =
1√

1 + λ2

(
X
√
λ2Ip

)
, y∗ =

(
y

0p

)

where Ip is the identity matrix of size p, and 0p ∈ Rp is a vector of zeroes. Let γ = λ1/
√

1 + λ2, and

β∗ =
√

1 + λ2β. Then, the EN criterion can be written as a Lasso problem with modified data:

L(γ,β∗) = ‖y∗ − X ∗β‖22 + γ‖β∗‖1

Moreover, let:

β̂∗ = arg min
β∗

L(γ,β∗)

Then, the EN solution can be obtained as:

β̂ =
1√

1 + λ2
β̂∗

Proof. Starting from 5:

L(λ1,λ2,β) = ‖y − Xβ‖22 + λ2‖β‖2 + λ1‖β‖1
= yT y − 2yTXβ + βTXTXβ + λ2β

Tβ + λ1‖β‖1
= yT y − 2yTXβ + βT (XTX + λ2Ip)β + λ1‖β‖1

Now, consider the matrix of size (n + p)× p:

X̃ =

(
X
√
λ2Ip

)
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We can verify that

X̃T X̃ = XTX + λ2Ip

However, X̃ is not standardized, since ∀j ∈ {1...p}:

x̃j
T x̃j = xT

j xj︸︷︷︸
1

+λ2

Thus, we now consider the standardized version of X̃ :

X ∗ =
1√

1 + λ2
X̃ =

1√
1 + λ2

(
X
√
λ2Ip

)

Likewise, consider the vector of length n + p defined by y∗ = (y , 0p)T . Note that, since y is centered,

y∗ is also trivially centered. We can verify that:

y∗T y∗ = yT y , y∗TX ∗ =
1√

1 + λ2
yTX

With these definitions, we can rewrite L(λ1,λ2,β):

L(λ1,λ2,β) = yT y − 2yTXβ + βT (XTX + λ2Ip)β + λ1‖β‖1

= y∗T y∗ − 2
√

1 + λ2y∗TX ∗β + (1 + λ2)βX ∗TX ∗β +

√
1 + λ2√
1 + λ2

λ1‖β‖1

= y∗T y∗ − 2y∗TX ∗(
√

1 + λ2β) + (
√

1 + λ2β)X ∗TX ∗(
√

1 + λ2β) +
λ1√

1 + λ2
‖
√

1 + λ2β‖1

Defining:

β∗ =
√

1 + λ2β, γ =
λ1√

1 + λ2

We arrive to the following expression:

L(λ1,λ2,β) = L(γ(λ1,λ2),β∗(β)) = y∗T y∗ − 2y∗TX ∗β∗ + β∗TX ∗TX ∗β∗ +
λ1√

1 + λ2
‖β∗‖1

= ‖y∗ − X ∗β∗‖22 + γ‖β∗‖1

which we identify as the Lasso criterion. Therefore, if β̂∗ solves the Lasso problem for the transformed

variables, i.e.:

β̂∗ = arg min
β∗

L(γ,β∗)
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then

β̂ =
1√

1 + λ2
β̂∗

is a solution for 5.

2.2 Relevance of Lemma 1

Lemma 1 is paramount to the method proposed by the authors, because it provides a straightforward

way to implement a solver for 5. Indeed, since we can pose the EN as a Lasso problem on transformed

data, then any method for obtaining solutions to the Lasso will be also a valid method for obtaining EN

solutions.

In particular, the authors propose a modified version of the Least Angle Regression with the Lasso

modification (LARS) [7]. LARS is an efficient way of computing Lasso paths λ 7→ β̂(λ), for λ between 0

(OLS estimate) and the smallest value that makes all the coefficients equal to 0, with the computational

complexity of a single OLS estimate.

Now, the authors correctly point out that naively applying LARS to the transformed data would be

inefficient. Recall that the size of X ∗ is (n + p)× p, with most of the bottom of the matrix (the
√
λ2Ip

part) being sparse. Of course, the problem becomes even worse when p � n. A similar thing happens

with y∗, which is just y padded with 0’s at the bottom.

Because of the above reasons, the authors propose a modified LARS algorithm to solve the Elastic

Net problem, which they name LARS-EN. These modifications take advantage of the sparsity of the

transformed the data.

2.3 Relationship between the solutions of the original and transformed problems

Given the association between the original and transformed problems, one could ask:

Is the solution to the transformed EN problem β̂∗ a Lasso solution for the original problem?

We will show that in general, and especially in the interesting case λ2 > 0, this is not true, by focusing

in the case where n > p and the design matrix X is orthonormal; i.e., when XTX = Ip. We start by

showing the exact solution for the Lasso in this particular case.

Proposition 1. Let (y , X ) such that XTX = Ip, and λ > 0. Also, assume that n > p. Then, the

solution to 4 is given by:

β̂k = sgn(β̂OLS
k )

(
|β̂OLS

k | − λ

2

)
+

, ∀k = 1...p (7)
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where (a)+ = max{0, a}. Moreover, this solution is unique.

Proof. Expanding the Lasso criterion:

L(λ,β) = ‖y − Xβ‖22 + λ‖β‖1
= yT y − 2yTXβ + βT XTX︸ ︷︷ ︸

Ip

β + λ‖β‖1

= yT y − 2yTXβ + βTβ + λ‖β‖1

We know that, since XTX = Ip, an unique OLS solution exists:

β̂OLS = (XTX )−1XT y = XT y

Putting this back in the above expression:

L(λ,β) = yT y − 2 ˆβOLS
T
β + βTβ + λ‖β‖1

= yT y +

p∑
k=1

(−2β̂OLS
k βk + β2k + λ|βk |)︸ ︷︷ ︸

f (β̂OLS
k ,βk ,λ)

= const. +

p∑
k=1

f (β̂OLS
k ,βk ,λ)

This means that the criterion is a sum of univariate functions, which can be optimized separately in

order to get the optimal vector β̂. In other words:

arg min
β

L(λ,β) =


arg minβ1 f (β̂OLS

1 ,β1,λ)
...

arg minβp f (β̂OLS
p ,βp,λ)


Pick k ∈ {1...p}, and let us focus on:

min
βk

f (β̂OLS
k ,βk ,λ) = −2β̂OLS

k βk + β2k + λ|βk |

The first thing we notice is that sgn(β̂k) = sgn(β̂OLS
k ), because the first term is negative (and thus

lower) when this happens, while the second and last terms are not affected by the sign. Next, we

examine the three possible cases:
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Case 1: Assume β̂OLS
k > 0. Then

f (β̂OLS
k ,βk ,λ) = −2β̂OLS

k βk + β2k + λβk

Since this is a strictly convex function of βk , the first order condition is sufficient to yield the global

minimizer:
df

dβk
= 0 = −2β̂OLS

k + 2βk + λ⇒ βk = β̂OLS
k − λ

2

However, we need to enforce the equality of the signs. Therefore:

β̂k =

(
β̂OLS
k − λ

2

)
+

Case 2: Assume β̂OLS
k < 0. Now, the first order condition becomes (f is again strictly convex):

df

dβk
= 0 = −2β̂OLS

k + 2βk − λ⇒ βk = β̂OLS
k +

λ

2

Again, we must enforce the sign equivalence:

β̂k = −
(
−β̂OLS

k − λ

2

)
+

Case 3: Assume β̂OLS
k = 0. Then f (0,βk ,λ) = β2k + λ|βk | is minimized at β̂k = 0.

Finally, assuming that the sign function can be defined as:

sgn(z) =


1 , z > 0

−1 , z < 0

0 , z = 0

then, we can consolidate the three cases into one formula:

β̂k = sgn(β̂OLS
k )

(
|β̂OLS

k | − λ

2

)
+

The uniqueness is given by the fact that the OLS solution is unique in this case.

Going back to the question, we know that the unique Lasso estimator for the original variables is given

by Proposition 1. We will now find an expression for β̂∗, which we can then compare to the above
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and assess their equivalence. Indeed, as Lemma 2.1 shows, β̂∗ is the solution to a Lasso problem with

transformed data (y∗, X ∗) and parameter γ.

Note that, if XTX = Ip, then:

X ∗TX ∗ =
1

1 + λ2
(XTX︸ ︷︷ ︸

Ip

+λ2Ip) =
1 + λ2
1 + λ2

Ip = Ip

Hence, X ∗ is also orthonormal. Thus, we can also apply Proposition 1 to obtain the solution. Indeed,

for all k = 1...p:

β̂∗k = sgn(β̂∗
OLS
k )

(
|β̂∗OLS

k | − γ

2

)
+

Now,

β̂∗
OLS
k = X ∗T y∗

However,

X ∗T y∗ =
1√

1 + λ2
XT y =

1√
1 + λ2

β̂OLS

γ =
λ1√

1 + λ2

Therefore, β̂∗
OLS

= 1√
1+λ2

β̂OLS , and:

β̂∗k =
1√

1 + λ2
sgn(β̂OLS

k )

(
|β̂OLS

k | − λ1
2

)
+

(8)

We can now ascertain that, for all λ2 > 0, β̂∗ 6= β̂, so β̂∗ is not the unique Lasso solution. In fact, β̂∗

is a shrunken version of the Lasso estimate (all coefficients are divided by
√

1 + λ2). Of course, when

λ2 = 0 both are equal, because the EN becomes equivalent to the Lasso.

3 Behavior of the Elastic Net and the Lasso when p > n

In what follows, we will give a formal proof that, in the case p > n, the Lasso is incapable of delivering

solutions with more than n non-zero coefficients. However, there is a simpler way of showing this.

Indeed, as Theorem 1 in [7] shows, the LARS algorithm with Lasso modification is capable of delivering

the entire path of Lasso solutions, provided the ”one-at-a-time” condition holds. This condition means

that at each iteration of LARS, no more than 1 variable enters or leaves the active set.
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Therefore, since we know that when p > n all versions of LARS stop at an iteration with at most

n variables in the active set, we know this will also apply when we use LARS for the transformed

data.

However, because the above won’t necessarily apply when the one-at-a-time condition doesn’t hold (the

authors of LARS specifically state that their algorithm is not designed to handle that case), we now give

a more general proof.

Proposition 2. Suppose the design matrix X is of size n × p, with p > n. Then, the Lasso can select

at most n variables.

Proof. Consider the Lasso criterion in Equation 4. Since this is the sum of a differentiable convex

function (‖y − Xβ‖22) and a subdifferentiable convex function (‖β‖1), the result is a subdifferentiable

convex function [12], whose subdifferential set is given by:

∂βL(λ,β) =

{
−2XT y + 2XTXβ + λη : η ∈ Rp, ηk ∈

{
{sgn(βk)} , βk 6= 0

[−1, 1] , βk = 0

}

Suppose we have a solution β̂ for 4, and let us consider the active set A = {k ∈ N : β̂k 6= 0}. For the

components of β̂ indexed by A, the subdifferential contains only one element, which means that the

stationarity Karush-Kuhn-Tucker (KKT) conditions [13] become:

0 ∈ ∂βL(λ, β̂A)⇔ −2XT
A yA + 2XT

A XAβ̂A + ληA = 0

Rearranging the terms, we obtain a linear system of equations that β̂A must satisfy:

XT
A XAβ̂A = XT

A yA −
1

2
ληA

Note that this is in fact a linear system, because ηA does not depend on β̂A, but only on A. Indeed, the

signs of the non-zero elements β̂A must be equal to the signs of XT
A yA. To see this, recall that

L(λ,β) = yT y − 2yTXβ + βTXTXβ + λ‖β‖1

We can see that the only term that is affected by the signs of β̂A is −2yTXβ. If we fix the magnitudes

of β̂A, then we can always make L(λ,β) lower by aligning the signs of β̂A and XT
A yA.

On the other hand, notice that:

rank(XT
A XA) ≤ rank(XTX ) = rank(X ) ≤ min{n, p} = n
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By the rank-nullity theorem, we know that

dim(ker(XT
A XA)) = |A| − rank(XT

A XA) ≥ |A| − n

where |A| is the size of A. Now, let us proceed by contradiction and assume that |A| > n. Then,

dim(ker(XT
A XA)) ≥ 1. This means that we know there is at least one vector v 6= 0 in the basis of the

subspace ker(XT
A XA). Therefore, there are infinite vectors satisfying the linear system above, which can

be described by:

β̂A(t) = β̂A + tv

where t ∈ R. Moreover, because of the assumption that A is the active set, we must have that ∀t ∈ R,

all the components of β̂A(t) are non-zero. However, we can always find at least one t such that at

least one component of β̂A(v∗) becomes exactly zero. To do this, we just need to pick any non-zero

component of v , and then choose t such that the corresponding component in β̂A(t) becomes 0. Thus,

we have arrived to a contradiction, and hence, |A| ≤ n.

Now, it is relatively easy to show why the above argument does not apply to the EN. Indeed, the EN

criterion from Equation 5 is again the sum of 2 differentiable convex functions and a subdifferentiable

convex function, so its subdifferential exists and is equal to:

∂βL(λ1,λ2,β) =

{
−2XT y + 2(XTX + λ2Ip)β + λ1η : η ∈ Rp, ηk ∈

{
{sgn(βk)} , βk 6= 0

[−1, 1] , βk = 0

}

Again, let us assume that we have a solution β̂ for the above, and let A be the active set. The KKT

condition becomes:

0 ∈ ∂βL(λ1,λ2, β̂A)⇔ −2XT
A yA + 2(XT

A XA + λ2I|A|)β̂A + λ1ηA = 0

which translates to the following linear system of equations:

(XT
A XA + λ2I|A|)β̂A = XT

A yA −
1

2
λ1ηA

We will show that rank(XT
A XA + λ2I|A|) = |A|. We know that, since XT

A XA is a Gram matrix, it

is symmetric and positive semi-definite. Thus, its real eigenvalues {εi}i=1...|A| are non-negative. Let
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{ei}i=1...|A| be their associated eigenvectors. Then

XT
A XAei = εiei

⇔XT
A XAei + λ2ei = εiei + λ2ei

⇔(XT
A XA + λ2I|A|)ei = (εi + λ2)ei

We see that the eigenvalues of (XT
A XA +λ2I|A|) are {εi +λ2}i=1...|A|. Therefore, since λ2 > 0, we have

that these eigenvalues are all positive. Hence, the matrix is non-singular, which means that the solution

to the linear system above is unique for every |A| ≤ p.

4 R implementations of the Elastic Net

The LARS-EN algorithm mentioned in 2.2 was implemented by the authors in the R package elasticnet.

However, since the original paper came out, there have been proposed many other alternative ways to

solve 5. The R package glmnet [14] is possibly the most popular of these.

For a standardized X and arbitrary y , glmnet solves an equivalent EN formulation:

min
β0,β

1

2n
‖y − β01n − Xβ‖22 + λ

(
(1− α)

1

2
‖β‖22 + α‖β‖1

)
(9)

Note that this form of the EN uses the intuition of the weighted average of penalties from Equation 6.

In order to compare it with Equation 5, let us further assume that y is centered, so that β0 = 0. Then,

by multiplying 9 by 2n, we get:

min
β
‖y − Xβ‖22 + nλ(1− α)‖β‖22 + 2nλα‖β‖1

which is just 5 with λ1 = 2nλα and λ2 = nλ(1−α). We can invert these equations to obtain a mapping

(λ1,λ2) 7→ (α,λ):

α(λ1,λ2) =
λ1

λ1 + 2λ2
λ(λ1,λ2) =

λ1 + 2λ2
2n

(10)

Hence, using 10, we will be able to obtain solutions to 5 for arbitrary (λ1,λ2) with package glmnet.

4.1 Checking implementations with an orthonormal design matrix

Because of the existence of an exact analytical solution, the case of an orthonormal X is specially useful

to check the validity of EN algorithmic implementations. Indeed, Equation 8 gives us the solution for
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the transformed data. By inverting the identity β∗ =
√

1 + λ2β, we can derive the exact solution of the

EN for an orthonormal design matrix:

β̂k =
1

1 + λ2
sgn(β̂OLS

k )

(
|β̂OLS

k | − λ1
2

)
+

(11)

With this in mind, we draw a matrix X of size n = 1000 and p = 20 from i id standard normals. To

get an orthogonal design matrix, we get the X = QR decomposition of X , and then replace X by Q.

Finally, we standardize this orthogonal X by imposing 1Tn xj = 0 and xT
j xj = 1 for all j = 1...p, which

means that X becomes orthonormal (i.e, XTX = Ip).

Likewise, we draw a sparse random β vector of size p with i id standard normal components at just 3

random locations, and the rest of the components being exactly 0. With this, we can get the response

vector y = Xβ. We have purposefully avoided adding noise to the response, because we are interested

in assessing the algorithmic implementations and want to avoid additional sources of variation. Also,

note that 1Tn y = (1Tn X )β = 0Tp β = 0, so y is centered as required.

Now, for glmnet to give the adequate solutions, we must set the options standardize and intercept

to FALSE. Because of this, we also need to standardize y so that yT y/n = 1 (note the extra 1/n term

with respect to the standardization of X ). Therefore, we obtain sdy =
√

yT y/n, and then divide both

β and y by this quantity to achieve the desired standardization, while ensuring the compatibility of y

with y = Xβ. Note that this change in y does not affect the original formulation of the EN, so that

11 is still valid. Finally, in order for elasticnet to give the desired output for an EN fit, we must

divide the beta.pure matrix that is produced by 1 + λ2 (which means that beta.pure actually gives

the Lasso fit for the transformed data)2.

Figure 1 shows the results of solving the EN using 11, glmnet and elasticnet, for 4 distinct values

of λ2. For the first two algorithms, we show paths of length 15 from λ1 = 0 to λ1 = 2 maxk |β̂OLS
k |,

which is the minimum λ1 that sets β̂ = 0. In the case of elasticnet, because of how LARS works,

only the values of λ1 at which a variable leaves the active set are available. Note that only the paths

for the non-zero components are shown. The horizontal dotted lines represent the true β values.

Thus, we can see that using all the modifications mentioned in the preceding paragraphs, we are

able to obtain the true paths (i.e, the ones given by the analytical formula) both with glmnet and

elasticnet.

2For elasticnet, it is not necessary to turn off normalize and intercept, since the data is already in the format it
requires, and thus those options won’t change anything.
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Figure 1: Comparison between the EN paths for an orthonormal design matrix X of size 1, 000×20, and
a β with just 3 non-zero components (only the paths for these are shown). The paths were generated
using the analytical formula, the elasticnet and the glmnet packages. The λ1 grid is of length 15
and goes from 0 to the minimum value that makes β̂ = 0. We used 4 different values for λ2 that
roughly represent the whole range of shrinkage allowed. The horizontal dotted lines represent the true
parameters’ values.

5 Simulations

In this section, we perform a simulation analysis to assess the out-of-sample predictive performance of

the EN. We compare it to the Lasso, and also to two other methods: the Minimiax Concave Penalty

(MCP), and the Smoothly Clipped Absolute Deviation (SCAD) [15]. All of these algorithms can be

written in the form of a penalized regression from Equation 3. It is known that, although the Lasso has

good out-of-sample predictive performance, the shrinkage it induces causes large effects to be biased

towards 0. MCP and SCAD propose penalization functions that for small effects behave like Lasso, but

for larger effects they monotonically diminish the shrinkage, and hence they are non-convex.

Both MCP and SCAD are implemented in R in package ncvreg. They have the same tuning parameters

(λ, γ). For each γ, ncvreg efficiently delivers complete paths for a sequence of λ, so it behaves much

like glmnet. For MCP, it is required that γ > 1, while for SCAD we need γ > 2. Moreover, for both

of them, we have that in the limit γ →∞, they converge to the Lasso.

Inspired by the simulations performed both in the original EN paper, and also the ones on [15], we

propose two types of tasks:

Tasks type A: a slight generalization of task a) in [11]. We allow for arbitrary parameters n (sample size),

σ (error std. dev.), p (number of coefficients), and a correlation parameter ρ such that corr(xi , xj) =
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ρ|i−j |. We can also turn this decay off. Additionally, we let pnz ∈ [0, 1] the proportion of non-zero

coefficients in β. We then choose dpnzpe components at random to be non-zero. Finally, we sample

the non-zero coefficients i id from a Gamma(α,β) distribution, parameterized in terms of a mean µb

and a standard deviation σb:

α =
µ2b
σ2b

β =
µb
σ2b

Note that tasks a) to c) in [11] can be almost exactly replicated using this set-up if we allow the decay

in correlation to be optional, and the limit σb → 0.

Tasks type B: these correspond to a modified task d) in the original paper. Recall that this experiment

was designed to emphasizes the grouping effect. However, we can see that there is a problem with its

definition. Let xi and xk two variables in group 1. By the definition of that task, we have:

xi j = Z1 + εi j xkj = Z1 + εkj

where Z1 ∼ N(0, 1) and εi j , εkj
i id∼ N(0,σ2ε ). Now, we note that:

Ĉ ov(xi , xk) =
1

n

n∑
j=1

(xi j − x̄i︸︷︷︸
≈Z1

)(xkj − x̄k︸︷︷︸
≈Z1

)

≈ 1

n

n∑
j=1

(Z1 + εi j − Z1)(Z1 + εkj − Z1)

=
1

n

n∑
j=1

εi jεkj

≈ C ov(εi j , εkj) = 0

The above is true for any σε > 0. The intuition behind is that , for small σε, the task is actually

creating groups of mildly disturbed intercepts. Because the algorithms center and scale all covariates,

these become almost equal to 0. And for large σε, they just become random white noise. Therefore,

there actually is no grouping effect under this design.

Given the above, in order to introduce the grouping effect we redefine the variables as

Group u: xi j = sin(uj) + εuij (12)
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for u ∈ {1, 2, 3}, and εuij
i id∼ N(0,σ2ε ). With this setup, we now have:

Ĉ ov(xi , xk) =
1

n

n∑
j=1

(xi j − x̄i︸︷︷︸
≈0

)(xkj − x̄k︸︷︷︸
≈0

)

≈ 1

n

n∑
j=1

(sin(uj) + εuij)(sin(uj) + εukj)

=
1

n

n∑
j=1

[sin(uj)2 + εuij sin(uj)︸ ︷︷ ︸
≈0

+ sin(uj)εukj︸ ︷︷ ︸
≈0

+ εuijε
u
kj︸ ︷︷ ︸

≈0

]

≈ 1

n

n∑
j=1

sin(uj)2 6= 0

Moreover, since sin(u1x) is orthogonal to sin(u2x) for any u1, u2 ∈ N, we know that variables from

different groups will be uncorrelated. Hence, with this new formulation, we obtain a true grouping

effect.

Keeping in mind that we want to try to test the EN in the setups it was designed for, we will emphasize

tasks with very sparse coefficients. Also, we will assess how increasing the correlation between predictors

affects its performance. Lastly, we will investigate if the EN stands out in the situation where there are

grouping effects.

Given the above, we designed a total of sixteen tasks based in modifications of the types described.

In each of these tasks we fit the four methods using the same methodology of splitting the data in

train/validate/test subgroups used in the original paper. For all tasks, we use a splitting of sizes

200/100/100. Note that this is very different from what the authors did in their simulations, where they

assign almost all of the data to the test set and very little to both training and validation. We think

that this can make tuning the parameters in the models more difficult, and therefore we adjusted it.

Additionally, for tasks of type A, we set pnz = 0.1, so as to ensure that there is quite enough sparsity

in the parameter vector. Also, we set µb = 2 and σb = 0.5. Finally, we allow the correlation to decay

in all tasks of type A.

The sixteen tasks are composed of 8 type A tasks and 8 type B tasks, each obtained by taking all the

combinations of:

• p ∈ {50, 300}. Note that when p = 300, since n = 200, we get a p > n situation, which the

authors did not include in their simulations.

• σ ∈ {1, 15}. The latter case was included in the tests of the original paper. We include the former

because [15] show that MCP and SCAD work better when the effects are large, or alternatively,

when the signal-to-noise ratio (SNR) is low.

• ρ ∈ {0.5, 0.9}. This settings only affect tasks of type A. The authors of the original paper only
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tried ρ = 0.5.

• σε ∈ {0.01, 1}: This setting only affects tasks of type B. The latter case is interesting because,

from Equation 12, it is easy to check that as σε grows, the noise dominates the deterministic

effect, and therefore the variables become less correlated.

In all of the tasks, we use glmnet and ncvreg. We use their default settings to scan for values of λ.

On the other hand, in the case of EN, we set a grid of size 10 for α with the following values:

α ∈ {0, 0.16, 0.32, 0.48, 0.64, 0.8, 0.9, 0.99, 0.999, 1}

We chose the grid finer when close to 1 because [14] states that these are usually where the optimal

value lies. Note that we also allow for the extreme cases where the EN becomes the Lasso and the

Ridge regression. In particular, this means that EN should always show the same or better performance

than the Lasso.

For MCP and SCAD we also used the default settings for the λ sequence. For the γ parameter, we set

grids based on the most extreme values used in the tests presented in [15]. In particular, for MCP we

used an equally spaced grid of size 10 between 1.2 and 20, while for SCAD we used a grid of the same

size between 2.1 and 20.
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Figure 2: Comparison between the 4 methods under Tasks of type A. The performance metric is the
median MSE in the test set for 100 independent realizations of each configuration. The bars represent
the median ±2 standard errors obtained by 500 bootstrap samples.

Figure 2 shows the results of the simulations for tasks of type A. The bars represent the median of

the Mean Squared Error (MSE) in the test set across 100 replications of each task, ±2 standard errors

obtained using 500 bootstrap samples. We can see that all the methods produce very similar results,

except for the case n < p (i.e, when p = 300 and n = 200 for the training set). Indeed, in the case

where ρ = 0.5, both MCP and SCAD obtain much better performances than EN and Lasso, which
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behave similarly. This agrees with the results of the simulations in [15], which find that MCP and SCAD

perform better than the Lasso with datasets of sparse but uncorrelated regressors. On the other hand,

when ρ is increased to 0.9, the opposite is true. In fact, note that the scales have changed, and that

MCP and SCAD incur in much more error than EN and Lasso had for ρ = 0.5. It is also noteworthy

that, even though the bars overlap, the medians tend to be lower for EN and Lasso also in the case

n < p and σ = 15. Both of these facts seem to suggest that the EN is a good choice for n < p,

especially when one assumes the existence of clusters of variables with high correlation.
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Figure 3: Comparison between the 4 methods under Tasks of type B. The performance metric is the
median MSE in the test set for 100 independent realizations of each configuration. The bars represent
the median ±2 standard errors obtained by 500 bootstrap samples.

The results for the tests under grouping (type B) are shown in Figure 3. We start by focusing on the

case σε = 0.01. The resulting within-group correlation in this case is higher than 0.99. We note that

there only are significant differences for the case n < p. Indeed, both MCP and SCAD outperform by

a great margin EN and Lasso, both under the low and high noise setup. However, we do note that EN

improves significantly over Lasso in the low noise case (σ = 1).

Now we turn our attention to the case σε = 1. Here, the within-group empirical correlation is lower and

closer to 0.3. Again, the relevant differences appear only in the case n < p. We note the conclusions

are now inverted: MCP and SCAD perform worse than EN and Lasso. Also, EN performs significantly

better than Lasso in both the low and high noise settings.

The conclusions from experiments of type A and B seem to contradict each another. On the one hand,

for tasks type A, we see that EN performs better when ρ is increased. Note that, because of the decay

in correlation of task A, there is a kind of grouping effect, which is actually similar to what arises from

an AR(1) time series process: observations close in time are correlated (serial correlation). On the other

hand, for tasks type B, we see that EN performs better when the within-group correlation is milder.

This contradiction highlights the fact that the interplay between different factors of a task (the level

of noise, the amount of predictors, the correlation and grouping of variables, etc.) yields complicated
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interactions that result in non-intuitive performances for different methods. This is closely related to

the results known as the ”no-free-lunch” theorems in statistical learning [16]. Therefore, one should

always apply and compare more than one method when making inferences about real data.

6 Analysis of a real dataset

We now turn our attention towards the assessment of the performance of the EN in a real dataset. The

data corresponds to the ”Gene Expression Cancer RNA-Seq Data Set” [17, 18]. It contains n = 801

measurements of p = 20, 531 RNA-Seq gene expression levels. Clearly, this is a setting where p � n.

Additionally, the dataset contains a response variable which is a label for each of the samples that

categorizes the type of tumor that the individual presented: BRCA (breast carcinoma), KIRC (kidney

renal clear cell carcinoma), COAD (colon adenocarcinoma), LUAD (lung adenocarcinoma) and PRAD

(prostate adenocarcinoma).

The categorical nature of the response variable suggests that this data can be analyzed using classification

models. Even though we have only studied the case of the EN for linear regression, the setup can be

extended to handle generalized linear models (GLM) by the following modification of Equation 5:

L(β,λ1,λ2) = −2L(X , y ,β) + λ2‖β‖22 + λ1‖β‖1 (13)

where L(X , y ,β) is the log-likelihood of the model. The quantity −2L(X , y ,β) is also known as the

deviance.

Using this approach, the package glmnet supports both binomial and multinomial regressions, as well as

other GLMs. On the other hand, the package ncvreg only supports binomial regression. Nevertheless,

we can restrict our task to one of finding whether a patient had one particular type of tumor (yi = 1)

or not (yi = 0). This becomes a binomial classification task, which we can now tackle using both

packages. We chose the tumor type BRCA because it is the most common in the dataset. Recall that

the binomial deviance can be simply stated as:

−2L(X , y ,β) = −2

∑
i :yi=1

log π(xT
i β) +

∑
i :yi=0

log(1− π(xT
i β))


where π here is the logistic or sigmoid function.

We proceeded first by dividing the dataset in a training and a test set, with a proportion of 70% for

the first. We did stratified sampling within the levels of the response variable to achieve better balance.

Next, in the training set we defined 10 equally sized subsets or folds, in order to perform 10-fold cross-

validation (CV) to tune the model parameters (again, we use stratified sampling to randomly assign the
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individuals to each fold). Then, we use the built-in functionalities of each package to perform the CV

process given the pre-specified folds. We used the same grids for α and γ from Section 5.

Table 1: Models obtained after tuning by 10-fold CV

Method Lambda Alpha / Gamma Non-zero coefficients CV mean deviance

EN 0.005 0.900 32 0.021

MCP 0.022 9.556 5 0.065

SCAD 0.022 6.078 14 0.066

The results of the parameter tuning process are summarized in Table 1. We excluded the Lasso in order

to reduce the computational burden and because, with the grid being used, it is a particular case of the

EN. Now, the first thing we notice is that the EN achieves the lowest CV mean deviance. Additionally,

this method includes the most non-zero coefficients (more than twice than the one that follows, which

is SCAD), which is consistent with the value of α = 0.9. This value represents a slight departure from

the pure Lasso estimator, which is itself consistent with what the authors from [14] note are the optimal

values for α. In contrast, the MCP and SCAD select much less covariates, possibly due to their similarity

to the Lasso with such large values for γ.
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Figure 4: Binomial deviances for the test set achieved by the EN, MCP and SCAD methods, which
were previously tuned using 10-fold CV. The center of the error bars are the deviances achieved by each
method, while the endpoints correspond to these values ± 2 times an standard error estimated by 500
bootstrap replications of the test set.

Having obtained appropriately tuned models, we apply them to the test set to assess their out-of-sample

performance. These results are summarized in Figure 4. Again, the center of the error bars are the

actual deviances achieved by each method, while the endpoints correspond to these values ± 2 times an

standard error estimated by 500 bootstrap replications of the test set. It is clear that this plot shows the

same pattern observed in Table 1: EN achieves a significantly better performance than MCP and SCAD.
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Again, the larger amount of predictors used by EN is probably playing an important role in achieving the

best score, because of the intuition that averaging correlated predictors gives more robust out-of-sample

predictions. This is consistent with the fact that SCAD, which uses 14 predictors, achieves slightly

better results than MCP, which only uses 5.

7 Discussion

In this report we have attempted to do a thorough examination of [11], by situating their proposed

method within the literature of variable selection, and verifying the author’s claims that EN actually

improves (both theoretically and experimentally) over alternatives, particularly the Lasso, but also others.

Indeed, our own experiments have shown that not only the EN is at least as good as Lasso (this is trivially

true because the Lasso is a special case), but it is actually significantly better in some setups. As the

authors anticipated, these are the cases when n < p and when there are grouping effects (recall the

discussion of the results shown in Figure 3b).

In fact, after 13 years since its publication, the EN is still a highly popular method in many scientific

fields, especially in genomics [19, 20, 21], where the problem of p � n is commonplace. Given the

success of the EN, it is a daunting task to try to find ways of improving it.

In spite of the above, we could focus on the paper itself, and ask ourselves if there are aspects that be

upgraded. And, indeed, we actually showed that there was a problem with task d) in their simulation’s

section, because their setup did not achieve grouping effects, and therefore we had to introduce a

modification to our simulations. Similarly, we objected the usage of small training and validation set

sizes, compared to test set, because it introduced unnecessary variation in the parameter search process.

Moreover, the test sets could be made smaller because we only used them to get an error estimate,

and we replicated that estimated many times to obtain the median value. This is why we used the

200/100/100 rule, which is more similar to what is typically seen in the literature.

But in a broader sense, there is one important issue not addressed in the paper that should have been

mentioned at least: the calculation of standard errors for the parameters. As it is known, simply obtaining

the OLS standard errors for the selected model is wrong, because they do not account for the degrees

of freedom lost in the search process [1]. Hence, lacking a theory for obtaining reasonable uncertainty

estimates for a given variable selection method, the researcher is forced to use bootstrapping in order

to get meaningful inferences on the coefficients of the selected model. But, carrying out hundreds of

bootstrap replications on large datasets, each one consisting of a full CV tuning of parameters, can be

prohibitive in terms of computation time.

The original paper for the Lasso actually proposed a cleverly simple strategy to obtain better standard

errors, by interpreting the Lasso solution as the optimum of a Ridge regression problem with a particular

anisotropic diagonal penalty matrix. Then, a closed form estimate of the matrix V ar(β̂) can be obtained.
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However, this method is not entirely satisfactory, as it gives standard errors equal to 0 for coefficients

not in the active set.

Still, the authors of [11] could have proposed an alternative similar to the above, or even assessed the

appropriateness of directly applying it to the EN, with perhaps minimum modifications. Intuitively this

should not be difficult, because the L2 penalty that the EN adds on top of the Lasso should play nicely

with the Ridge regression interpretation.

Nevertheless, since the publication of [11], there have been considerable advances in the literature

related to post-selection inference; that is, inference on the model parameters that takes into account

the search process. One notable example is [22], which develops a general framework for exact post-

selection inference, and actually gives the solution for the case of the EN. This will probably enable the

adoption of the EN by more scientific communities, especially the ones where explanatory analyses are

more relevant than predictive modeling [23], so that meaningful uncertainty estimates about the fitted

coefficients are crucial.
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